Can regenerative agriculture restore soil health and bridge gender gap in farm productivity? Empirical insights from Nigeria
DOI:
https://doi.org/10.37905/drsj.v3i1.77Keywords:
adoption, climate change, decomposition technique, gender, regenerative agricultureAbstract
This study investigates the potential of Regenerative Agriculture (RA) to improve soil health and address gender disparities in agricultural productivity among smallholder farmers in Nigeria. Using data from a randomized controlled trial, the research evaluates gender-specific RA adoption rates and their impact on farm productivity through Blinder-Oaxaca decomposition and Propensity Score Matching (PSM). Results reveal significant adoption disparities, with male farmers benefitting from larger farms, better education, and higher incomes compared to female farmers. RA adoption improved yields for both genders, though productivity gaps persisted due to structural barriers, including limited access to land, credit, and extension services for women. Female farmers, despite adopting RA practices, often faced greater challenges in maximizing productivity due to socio-economic constraints. These findings underscore the importance of addressing resource inequities and promoting gender-sensitive interventions to encourage equitable adoption of RA. Enhancing women’s access to agricultural education, financial support, and climate-related information is essential. Additionally, fostering community-based platforms and collaboration can further strengthen sustainable practices. This study provides critical insights for policymakers and practitioners to improve smallholder farmers’ productivity, promote sustainable agriculture, and build climate-resilient food systems in Nigeria and similar regions facing comparable challenges.
Downloads
References
Abdoulaye, T., Wossen, T., & Awotide, B. (2018). Impacts of improved maize varieties in Nigeria: Ex-post assessment of productivity and welfare outcomes. Food Security, 10(2), 369–379. https://doi.org/10.1007/s12571-018-0772-9
Adepoju, A. A., Yusuf, S. A., & Omonona, B. T. (2011). Factors influencing food security among maize-based farmers in southwestern Nigeria. International Journal of Research in Agricultural Sciences, 3(1), 17–24.
Anderegg, W. R. L., Prall, J. W., Harold, J., & Schneider, S. H. (2010). Expert credibility in climate change. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12107–12109. https://doi.org/10.1073/pnas.1003187107
Asfaw, S., Shiferawm B. Simtowe, F., & Lipper, L. (2012). Impact of modern agricultural technologies on smallholder welfare: Evidence from Tanzania and Ethiopia. Food Policy, 37(3), 283–295. https://doi.org/10.1016/j.foodpol.2012.02.013
Asprooth, L. (2023). Supporting a transition to a regenerative agriculture in the Corn Belt: Grassroots and top-down approaches to encouraging farmer adoption of regenerative farming practices (Dissertation No. 30640115, University of California, Davis). ProQuest Dissertations and Theses. https://www.proquest.com/openview/9db53456d5a3a140b577b8181a2d72dc/1?pq-origsite=gscholar&cbl=18750&diss=y
Baruwa, O. I., Kassali, R., & Aremu, F. J. (2015). Adoption of improved maize varieties among farming households in Osun State, Nigeria. Production Agriculture and Technology Journal, 11(2), 1–9. https://www.researchgate.net/publication/302907417
Beke, T. E. (2011). Institutional constraints and adoption of improved rice varieties: Econometric evidence from Ivory Coast. Review of Agricultural and Environmental Studies, 92(2), 117–141.
Bello, L. O., Baiyegunhi, L. J. S., & Danso-Abbeam, G. (2020). Productivity impact of improved rice varieties' adoption: Case of smallholder rice farmers in Nigeria. Economics, Innovation and New Technologies, 1–17.
Blinder, A. S. (1973). Wage discrimination: Reduced form and structural estimates. Journal of Human Resources, 8(4), 436–455. https://doi.org/10.2307/144855
Bryan, E., Alvi, M., Huyer, S., & Ringler, C. (2023). Addressing gender inequalities and strengthening women’s agency to create more climate-resilient and sustainable food systems. Global Food Security, 40, 100731. https://doi.org/10.1016/j.gfs.2023.100731
Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of propensity score matching. Journal of Economic Surveys, 22(1), 31–72.
Cunguara, B., & Darnhofer, I. (2011). Assessing the impact of improved agricultural technologies on household income in rural Mozambique. Food Policy, 36(3), 378–390. https://doi.org/10.1016/j.foodpol.2011.03.002
Dehejia, R. H., & Wahba, S. (2002). Propensity score-matching methods for nonexperimental causal studies. Review of Economics and Statistics, 84, 151–161.
Dercon, S., & Christiaensen, L. (2011). Consumption risk, technology adoption, and poverty traps: Evidence from Ethiopia. Journal of Development Economics, 96, 159–173.
Doran, P. T., & Zimmerman, M. K. (2009). Examining the scientific consensus on climate change. Eos, Transactions American Geophysical Union, 90(3), 22–23. https://doi.org/10.1029/2009EO030002
Ersado, L., Amacher, G. S., & Alwang, J. (2004). Productivity and land-enhancing technologies in northern Ethiopia: Health, public investments, and sequential adoption. American Journal of Agricultural Economics, 86(2), 321–331.
Fairlie, R. W., & Robb, A. M. (2009). Gender differences in business performance: Evidence from the characteristics of business owners survey. Small Business Economics, 33(4), 375–395.
Fanzo, J., Davis, C., McLaren, R., & Choufani, J. (2018). The effect of climate change across food systems: Implications for nutrition outcomes. Global Food Security, 18, 12–19. https://doi.org/10.1016/j.gfs.2018.06.001
Food and Agriculture Organization of the United Nations (FAO). (2022). Greenhouse gas emissions from agrifood systems: Global, regional and country trends, 2000–2020 (FAOSTAT Analytical Brief Series No. 50. https://www.fao.org/faostat/en/#data/GT
Fisher, M., Paul, A. L., & Pilgeram, R. (2021). Farmworkers and the gender wage gap: An empirical analysis of wage inequality in US agriculture. Applied Economic Perspectives and Policy, 43(1), 1–19. https://doi.org/10.1002/aepp.13202
Frölich, M. (2004). Finite-sample properties of propensity-score matching and weighting estimators. Review of Economics and Statistics, 86, 77–90.
Frölich, M. (2007). Propensity score matching without conditional independence assumption—with an application to the gender wage gap in the United Kingdom. The Econometrics Journal, 10(2), 359–407.
Gregory, T., & Sewando, P. (2013). Determinants of the probability of adopting quality protein maize (QPM) technology in Tanzania: A logistic regression analysis. International Journal of Development and Sustainability, 2(2), 729–746. https://www.researchgate.net/publication/344103092
Habtemariam, L. T., Mgeni, C. P., Mutabazi, K. D., & Sieber, S. (2019). The farm income and food security implications of adopting fertilizer micro-dosing and tied ridge technologies under semi-arid environments in central Tanzania. Journal of Arid Environments, 166, 60–67.
Heckman, J., Ichimura, H., Smith, J., & Todd, P. (1998). Characterizing selection bias using experimental data. Econometrica, 66, 1017–1098.
Heckman, J. J., LaLonde, R., & Smith, J. (1999). The economics and econometrics of active labor market programs. In O. Ashenfelter & D. Card (Eds.), Handbook of Labor Economics (Vol. 3, pp. 1865–2097). North-Holland.
Hosny, A. S. (2013). Theories of economic integration: A survey of the economic and political literature. International Journal of Economics, Management, and Social Sciences, 2, 133–155.
Intergovernmental Panel on Climate Change. (2018). Summary for policymakers. In: Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above preindustrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., Gomis, M.I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield, T. (Eds.). IPCC. https://www.ipcc.ch/sr15/chapter/chapter-2/
Intergovernmental Panel on Climate Change (IPCC). (2019). Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.). https://www.ipcc.ch/srccl/
International Fund for Agricultural Development (IFAD). (2021, April 30). African countries commit to double agricultural productivity as development banks, institutions pledge US$17 billion to increase food security. [Press release]. https://www.ifad.org/en/web/latest/-/african-countries-commit-to-double-agricultural-productivity-as-development-banks-institutions-pledge-us-17-billion-to-increase-food-security
Issahaku, G., & Abdulai, A. (2019). Can farm households improve food and nutrition security through adoption of climate-smart practices? Empirical evidence from Northern Ghana. Applied Economic Perspectives and Policy, 1–22.
Khan, Z. R., Midega, C. A. O., Hooper, A. M., & Pickett, J. A. (2017). Push–pull: Chemical ecology-based integrated pest management technology. Journal of Chemical Ecology, 42(7), 689–697. https://doi.org/10.1007/s10886-016-0730-y
Kiefer, K., Heileman, M., & Pett, T. L. (2022). Does gender still matter? An examination of small business performance. Small Business Economics, 58(1), 141–167. https://doi.org/10.1007/s11187-020-00403-2
Koneswaran, G., & Nierenberg, D. (2008). Global farm animal production and global warming: Impacting and mitigating climate change. Environmental Health Perspectives, 116(5), 578–582. https://doi.org/10.1289/ehp.11034
Lal, R., Smith, P., Jungkunst, H. F., Mitsch, W. J., Lehmann, J., Nair, P. K. R., … Ravindranath, N. H. (2018). The carbon sequestration potential of terrestrial ecosystems. Journal of Soil and Water Conservation, 73(6), 145A–152A. https://doi.org/10.2489/jswc.73.6.145A
Meara, K., Pastore, F., & Webster, A. (2020). The gender pay gap in the USA: A matching study. Journal of Population Economics, 33(1), 271–305. https://doi.org/10.1007/s00148-019-00743-8
Makate, C., Makate, M., Mango, N., & Siziba, S. (2019). Increasing resilience of smallholder farmers to climate change through multiple adoption of proven climate-smart agriculture innovations: Lessons from Southern Africa. Journal of Environmental Management, 231, 858–868. https://doi.org/10.1016/j.jenvman.2018.10.069
Martey, E., Kuwornu, J. K. M., & Adjebeng-Danquah, J. (2019). Estimating the effect of mineral fertilizer use on land productivity and income: Evidence from Ghana. Land Use Policy, 85, 463–475. https://doi.org/10.1016/j.landusepol.2019.04.027
Morgan, S. L., & Harding, D. J. (2006). Matching estimators of causal effects: Prospects and pitfalls in theory and practice. Sociological Methods & Research, 35(1), 3–60. https://doi.org/10.1177/0049124106289164
Nasukawa, H., Tajima, R., Pereira, M. C. F., Pedro, J. A., Nakamura, S., Fukuda, M., Koide, J., Oya, T., & Homma, K. (2025). Management strategies for regenerative agriculture based on the assessment of soil fertility in northern Mozambique. Geoderma Regional, 40, e00912. https://doi.org/10.1016/j.geodrs.2024.e00912
Nata, J. T., Mjelde, J. W., & Boadu, F. O. (2014). Household adoption of soil-improving practices and food insecurity in Ghana. Agriculture & Food Security, 3(17). https://doi.org/10.1186/2048-7010-3-17
Ñopo, H. (2008). Matching as a tool to decompose wage gaps. The Review of Economics and Statistics, 90(2), 290–299. https://doi.org/10.1162/rest.90.2.290
Obayelu, A. E., Afolami, C. A., Folorunso, O., Adebayo, M. A., & Ashimolowo, O. R. (2023). Impact of adoption of mobile-based information communication technologies on production efficiencies among smallholder farmers in the southwest of Nigeria. Tropical Agriculture (Trinidad), 100(1), 44–58. https://www.researchgate.net/publication/369039766
Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review 1973: 693–709. https://www.jstor.org/stable/2525981?origin
Ogunniyi, A., Olagunju, K. O., Adeyemi, O., Kabir, S. K., & Philips, F. (2017). Scaling up agricultural innovation for inclusive livelihood and productivity outcomes in Sub-Saharan Africa: The case of Nigeria. African Development Review, 29, 121–134. https://doi.org/10.1111/1467-8268.12267
Olagunju, K. O., Ogunniyi, A. I., Awotide, B. A., Adenuga, A. H., & Ashagidigbi, W. M. (2019). Evaluating the distributional impacts of drought-tolerant maize varieties on productivity and welfare outcomes: An instrumental variable quantile treatment effects approach. Climate and Development, 12(10), 865–875. https://doi.org/10.1080/17565529.2019.1701401
Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., Hermans, K., Jobbagy, E., Kurz, W., Li, D., Sonwa, D. J., & Stringer, L. (2019). Land degradation. In P. R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, & J. Malley (Eds.), Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (pp. 345–436). Intergovernmental Panel on Climate Change (IPCC). https://www.ipcc.ch/site/assets/uploads/sites/4/2019/11/07_Chapter-4.pdf
Onumadu, F. N., & Osahon, E. E. (2014). Socio-economic determinants of adoption of improved rice technology by farmers in ayamelum local government area of Anambra State, Nigeria. International Journal of Scientific & Technology Research, 3(1), 308–314.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70(1), 41–55. https://doi.org/10.1093/biomet/70.1.41
Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 39(1), 33–38. https://doi.org/10.2307/2683903
Schreefel, L., Schulte, R. P. O., de Boer, I. J. M., Pas Schrijver, A., & van Zanten, H. H. E. (2020). Regenerative agriculture – the soil is the base. Global Food Security, 26, 100404. https://doi.org/10.1016/j.gfs.2020.100404
Teklewold, H., Kassie, M., & Shiferaw, B. (2013). Adoption of multiple sustainable agricultural practices in rural Ethiopia. Journal of Agricultural Economics, 64(3), 597–623. https://doi.org/10.1111/1477-9552.12011
Tsue, P. T., Nweze, N. J., & Okoye, C. U. (2014). Effects of arable land tenure and use on environmental sustainability in North-Central Nigeria. Journal of Agriculture and Sustainability, 6(1), 14–38. https://www.researchgate.net/publication/351853435
Varma, P. (2019). Adoption and the impact of system of rice intensification on rice yields and household income: An analysis for India. Applied Economics, 51(45), 4956–4972. https://doi.org/10.1080/00036846.2019.1606408
Wossen, T., Abdoulaye, T., Alene, A., Haile, M. G., Feleke, S., Olanrewaju, A., & Manyong, V. (2017). Impacts of extension access and cooperative membership on technology adoption and household welfare. Journal of Rural Studies, 54, 223–233. https://doi.org/10.1016/j.jrurstud.2017.06.022
Wordofa, M. G., Hassen, J. Y., Endris, G. S., Aweke, C. S., Moges, D. K., & Rorisa, D. T. (2021). Adoption of improved agricultural technology and its impact on household income: A propensity score matching estimation in eastern Ethiopia. Agriculture & Food Security, 10(5). https://doi.org/10.1186/s40066-020-00278-2
Zingiro, A., Okello, J. J., & Guthiga, P. M. (2014). Assessment of adoption and impact of rainwater harvesting technologies on rural farm household income: The case of rainwater harvesting ponds in Rwanda. Environment, Development and Sustainability, 16(6), 1281–1298. https://doi.org/10.1007/s10668-014-9527-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abdulrazaq Kamal Daudu, Oyedola Waheed Kareem, Latifat Kehinde Olatinwo, Mariam B. Alwajud-Adewusi, Halimah Olayinka Egbewole

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.